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Abstract
The experiment aims to measure the orbital periods of Jupiter’s four largest moons: Io, Europa,
Ganymede, and Callisto; the verification of Kepler’s Third Law happens in parallel. For the
experiment, a 6-inch telescope and a smartphone camera are used to collect the observational
data over the course of multiple nights. Precise timestamps have been recorded for each image.
A custom Python program was developed to process these images and isolate the positions
of Jupiter and its moons within certain pixel ranges to obtain their positions relative to the
planet. From this positional information, one could monitor the movement of the moons, model
their orbits, and compute the orbital period of each of them.The experimental results of the
orbital periods of Jupiter’s four largest moons are : Io (1.7697 ± 0.0017 days), Europa (3.5806
± 0.0206 days), Ganymede (7.2172 ± 0.0343 days), and Callisto (16.6813 ± 0.0893 days), using
a 6-inch telescope and smartphone camera. The relative errors between the calculated and
actual orbital periods were 0.039%, 0.833%, 0.869%, and 0.047%, respectively. The consistency
of Kepler’s Third Law can be shown by analyzing the relationship of the orbital periods of
the moons to their average distances from Jupiter. Moreover we also verified laplace resonance
ratio for Io,Europa and Ganymede. This is an example of how quite inexpensive tools and
computing can be used to perform meaningful astronomical analyses.
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1 Introduction

Jupiter, the biggest of all the planets in our
solar system, has astonishing 95 confirmed
moons and each has different orbital proper-
ties. Among them the four largest, ’Galilean’
moons, consist of Io, Europa, Ganymede, and
Callisto that were first viewed by Galileo
Galilei in 1610. They have different periods
of orbital movements, the shortest period is
that of Io that is 1.77 days and longest is
Callisto’s of 16.69 whereas for Europa is 3.55
and Ganymede is 7.16 days. Interestingly, Io,
Europa, and Ganymede are locked in a 1:2:4
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orbital resonance, a dynamic interaction that
causes these moons to slowly migrate outward
due to tidal interactions with Jupiter. This is
an example of Laplace resonance(a three-body
resonance with a 1:2:4 orbital period ratio)
how is it relevant for amateur astronomers?
Tracking the positions of Jupiter’s moons over
multiple nights improves proficiency in tele-
scope use, star chart navigation, and data col-
lection. Amateurs take notes on how to con-
duct observations, timing events, and analyz-
ing trends. Amateur astronomers equipped
with limited resources will find this experi-
ment accessible and meaningful without hav-
ing to resort to serious technology. This ex-
periment involves calculating the orbital peri-
ods of Jupiter’s moons with a 6-inch telescope
and a smartphone camera. The aim is to
observe the positions of these moons against
Jupiter over several days ( preferably 17 days
or more) to track their motion and thereby
calculate their orbital periods. Such observa-
tions not only teach us about the mechanics
of celestial motion but also connect us with
the early methods of astronomical discovery.

1.1 Background Theory

Kepler’s Third Law states that the square of
the period (T ) of a planet (or moon) is di-
rectly proportional to the cube of the semi-
major axis (r) of its orbit. This is expressed
mathematically by:

T 2 ∝ r3.

Thus, objects farther from the central body
will take longer to complete an orbit compared

to those nearer to it. Therefore, this relation-
ship is expected to be specific and quantifi-
able.

This relationship can be verified in the context
of Jupiter’s moons. By determining the or-
bital periods(the time required for a moon to
complete a revolution around Jupiter)and by
comparing the respective average distances
from Jupiter, the validity of Kepler’s Third
Law can be assessed. The hypothesis is that
if the orbital period squared (T 2) is propor-
tional to the orbital distance cubed (r3), then
Kepler’s Law is valid for Jupiter’s moons.

For the purpose of this experiment, the moons
are assumed to be in circular orbits around
Jupiter and the periodic function obtained by
plotting distance from jupiter and time as a
sine function. These assumption were made to
facilitate simple calculations, as the distance
from Jupiter to the moon would vary in an
elliptical orbit but remain constant in a cir-
cular orbit. Furthermore, treating the orbit
as a circle makes the application of Kepler’s
Third Law easier, since the distance remains
constant and is not subject to the variability
of elliptical orbits.

In reality, the orbits of the moons are not per-
fectly circular at all times. However, since the
variations in their orbits are relatively small,
it is a reasonable approximation to treat the
moons as moving in circular orbits. This
allows for a sufficiently accurate estimation
of the moons’ orbital periods and provides
a means for qualitatively verifying Kepler’s
Third Law. By focusing solely on the distance
and time in orbit, this simplification avoids
the complications of elliptical motion.
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2 Description of the experiment

2.1 Experimental setup

The experimental setup is simple: all you
need is a 6-inch telescope, a 10mm eyepiece
,a smartphone for data collection, and a com-
mitment to observing the night sky during a
total period of about 17 days.

• 6-Inch Telescope:
The 6-inch telescope with a 150 mm
aperture and a focal length of 750mm
is a suitable

• size for viewing Jupiter and its moons.
Because of its larger aperture, clear de-
tails of Jupiter’s atmosphere in addi-
tion to the positional information of its
Galilean moons might be resolved with
more light. It typically configures it-
self as a Newtonian reflector, having
a parabolic main mirror and flat sec-
ondary mirror in such a way that chro-
matic aberration is reduced and images
are clearer.

• 10mm eyepiece :
A 10mm eyepiece provides sufficient
magnification i.e 75x which allows us to
clearly resolve Jupiter and its 4 moons.

• mobile holder :
A mobile holder is used for stable imag-
ing ,consistent alignment and hand free
operation necessary to obtain images
without trails

2.2 Experimental procedure
and data acquisition

Instructions for Setting Up a 6-inch Telescope

1. Take the tripod of the 6-inch telescope
and position one of its legs toward the
south.(make sure the legs are at the
maximum separation).

2. Attach the mount to the tripod, ensur-
ing it is aligned to face the polar star
(north).

3. Secure the counterweights on the
mount.

4. Carefully attach the telescope to the
mount, making sure the screws are
tightened properly.

5. Install accessories such as the eyepiece,
mobile holder,mobile and adjustment
bolts.

6. Balance the telescope for smooth oper-
ation and stability.

7. Align viewfinder and eyepiece using a
distinct stable red light source.

8. Point telescope towards Jupiter using a
viewfinder and tight the screws.

9. Use fine adjusters to take Jupiter in the
centre.

10. Change focus of the eyepiece accord- in-
gly.

11. Attach the mobile with the eyepiece
with the help of the mobile holder.

12. Make sure Jupiter and its moon should
be visible properly.

13. Change the settings in the pro mode of
camera to get the best image possible.

14. Adjust your camera settings to reduce
blur and pixel scattering (for this you
can increase shutter speed reduce expo-
sure time, adjust white balance).

15. Set a timer for 3 to 5 seconds and let
it capture the image without disturbing
the setup.

16. It is advisable to capture a short video
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sequence in adverse weather conditions,
such as when Jupiter experiences drift
or blurring. Subsequently, individual
frames can be extracted from the video.

17. repeat these steps for approx 17 days or
more.

After we are done with collecting enough im-
ages for each day we will start our data mod-
elling:

• The first step involves selecting the best
three images per day from the stack of
images. The criterion for a good image
is:

1. The pixels representing Jupiter
and its moons should be sharply
concentrated, with no visible trail-
ing or blurring.

2. All images should maintain a con-
sistent orientation, ensuring they
are aligned in the same orientation
throughout the observations.

Figure 1: Example of a good image

Figure 2: Example of a bad image. you can
see trails and blur here

Figure 3: Images at the bottom have consis-
tent orientation whereas the one above have
a different orientation, the above image needs
to be discarded.

• From bottom to up, label the moons as
a, b, c, and d, and Jupiter as J ( in every
image, irrespective of what they actually
are. There might be different labeling of
the images. This is fine because it will
identify the correct identity during the
later analysis. )

2.3 Determining the coordi-
nates

The coordinates were determined using the
code that has been explained thoroughly in
the appendix section (appendix 6.1). The co-
ordinates were determined according to the la-
beling that was done previously and the coor-
dinates were entered in Table 1.
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Table 1: Coordinates of Jupiter(J) and Moons(M) (a, b, c, d) at Different Times(T)
T (hrs) J (x) J (y) Ma (x) Ma (y) Mb (x) Mb (y) Mc (x) Mc (y) Md (x) Md (y)

0.00 1,541.63 1,260.79 1,451.89 1,641.29 1,470.08 1,460.52 1,506.82 1,228.51 1,541.63 615.22

23.47 1,761.27 1,242.60 1,882.12 1,506.93 1,805.47 1,321.76 1,785.20 1,317.67 1,535.59 770.20

50.35 1,879.61 1,632.74 1,896.31 1,595.75 1,871.37 1,482.83 1,862.24 1,390.59 1,832.72 1,330.10

74.78 1,697.13 1,424.65 1,698.43 1,568.71 1,687.06 1,473.74 1,666.11 1,360.68 1,705.80 1,107.24

96.78 2,218.54 1,256.84 2,226.30 1,480.64 2,190.52 1,421.08 2,212.27 1,123.01 2,213.50 889.92

121.60 2,221.68 1,551.15 2,427.15 1,932.29 2,269.63 1,618.94 2,154.14 1,427.71 2,111.80 1,412.20

145.18 1,843.00 1,412.24 1,920.31 2,009.33 1,856.89 1,570.84 1,839.35 1,377.45 1,813.41 1,236.89

192.28 2,299.78 1,014.78 2,226.57 1,661.32 2,270.66 1,325.34 2,296.68 1,125.75 2,286.24 1,073.29

215.40 2,549.01 819.33 2,669.57 1,386.26 2,539.61 724.13 2,519.08 593.74 - -

238.58 2,128.41 829.71 2,052.80 1,214.12 2,093.35 949.36 2,132.96 765.73 2,207.44 591.79

262.42 1,589.51 1,015.39 1,497.88 1,239.77 1,553.61 1,182.71 1,646.69 875.14 1,730.59 652.87

288.53 1,626.28 1,160.13 1,558.93 1,273.35 1,676.44 1,100.88 1,710.52 1,084.44 1,728.24 963.55

313.02 2,520.70 1,399.58 2,480.41 1,505.19 2,524.79 1,316.92 2,546.56 1,186.02 2,608.48 1,051.81

337.33 2,042.02 1,579.50 1,894.19 1,930.50 1,971.51 1,732.55 2,266.85 1,087.49 - -

360.02 2,367.47 1,303.43 2,416.95 1,673.06 2,395.35 1,470.46 2,320.10 670.26 - -

384.18 1,052.84 1,552.44 1,043.71 1,653.13 1,088.84 1,464.27 1,133.13 1,321.71 1,262.79 848.51

406.80 1,827.58 1,516.91 1,785.21 1,602.28 1,854.64 1,404.18 1,920.59 1,304.01 2,030.95 918.14

433.07 2,393.99 1,435.03 2,473.35 1,696.69 2,370.83 1,301.64 2,312.74 1,073.88 2,274.49 1,013.88

3 Analyses

3.1 Data Analysis

The distance table is created using the coor-
dinates from Table 1. We used the Euclidean
distance formula to calculate it:

d =
√

(x2 − x1)2 + (y2 − y1)2

where x2 and y2 represent the coordinates of
Jupiter at any time t, and x1 and y1 repre-
sent the coordinates of a moon at the corre-
sponding time. This allows us to calculate
the distances from Jupiter, treating it as the
origin. Additionally, we applied a convention
to aid our analysis: the moon located below
Jupiter is assigned a negative sign for its dis-
tance. (For example, if you take the data,
it may happen that the moon to the right of
Jupiter is assigned a negative sign, etc.) This
is simply a convention.

Table 2: Distance Table Showing Distances of
Moons (a, b, c, d) from Jupiter at Different
Times
Time
(hrs)

D ja D jb D jc D jd

0.000 -390.935 -212.155 47.484 645.578
23.467 -290.643 -90.660 -78.794 523.538
50.350 40.588 150.137 242.779 306.253
74.783 -144.065 -50.116 71.089 317.524
96.783 -223.929 -166.612 133.981 366.952
121.600 -432.992 -83.027 140.713 177.152
145.183 -602.074 -159.210 34.983 177.834
192.283 -650.667 -311.917 -111.016 -60.055
215.400 -579.614 95.656 227.559 0.000
238.583 -391.774 -124.677 64.146 250.702
262.416 -242.367 -171.132 151.453 388.997
288.533 -131.742 77.627 113.247 221.450
313.016 -113.034 82.764 215.117 358.677
337.333 -380.854 -168.513 540.942 0.000
360.016 -372.929 -169.337 634.938 0.000
384.183 -101.100 95.240 244.306 734.579
406.800 -95.311 115.929 232.328 632.358
433.066 -273.428 135.385 370.179 437.780
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3.1.1 Data Modelling

After constructing the distance table, we be-
gan the process of identifying the moons.
From the table, we identified the maximum
modulus distance from Jupiter as 734.578.
However, to account for the possibility that
the largest separation of the farthest moon
might have been missed, we set the maximum
distance to 750(m1). All distances in the ta-
ble were then divided by this value(table 3).
Next, we plotted these normalized distances
with respect to time (Fig:3). This will further
aid our visualization of the data.

Figure 4: The plots from data in table 3

To identify the moons, we located the maxi-
mum and minimum points on the plot and vi-
sualize a sine curve that passes through these
extrema. This is quiet easy for the farther
away moons, Data points along this curve
were attributed to the farthest moon. You
can also see this in the above plot(Fig:3), the
maximum is first green data point, then blue
data point is the minimum and then the green
data point at the end is another maximum
point, we can also visualize a sine curve pass-
ing through these points. These points were
then isolated, and the corresponding distances
were removed from the distance table (table
2), and made a new distance table(table 4).
This was identified as moon 1.

Table 4: Distance Table with Data Points Re-
moved
Time
(hrs)

D ja D jb D jc D jd

0.000 -394.647 -213.492 47.484 -
23.467 -290.643 -90.660 -78.794 -
50.350 40.588 150.137 242.779 -
74.783 -144.065 -50.116 71.089 317.524
96.783 - -166.612 133.981 366.952
121.600 - -83.027 140.713 177.152
145.183 - -159.210 34.983 177.834
192.283 - -311.917 -111.016 -60.055
215.400 - 95.656 227.559 -
238.583 - -124.677 64.146 250.702
262.416 -242.367 - 151.453 389.997
288.533 -131.742 - 113.247 221.450
313.016 -113.034 82.764 215.117 -
337.333 -380.854 -168.513 - -
360.016 -372.929 -169.337 - -
384.183 -101.100 95.240 244.306 -
406.800 -95.311 115.929 232.328 -
433.066 -273.428 135.385 370.179 -

We repeated the same procedure to isolate
the data points corresponding to the second
farthest, third farthest, and finally the clos-
est moon to Jupiter (i.e., the fourth farthest).
All this was done in Google sheets, as it is
much easier to handle the data. We finally
obtained the distance of the different moons
of the Jupiter. we plotted them to get a better
visualization.
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Figure 5: plots of Filtered data of moons

After isolating the data for each moon, we
used Python to fit the points to a sine curve
with minimal error. The model function used
was Asin(ωt + c), where A, ω, and c are the
fitting parameters. This model is consistent
with our assumption that the orbits are ap-
proximately circular, and since we are observ-
ing Jupiter and its moons edge-on, the projec-
tion of a circular orbit appears as a harmonic

function. After the initial fitting, we observed
that some data points were better suited to
other moons, so we refined the dataset by re-
assigning points based on their alignment with
the fitted curves (Fig: 5).

Figure 6: Plots that tell us more about which
data point belongs to which moon, after the
first attempt to fit the sine function

Refering to the above figure(figure 8). Look
at the third data plots in both plots. It is way
lower (≈ 150pxls) and higher(≈ 250) than the
predicted values by the respective sin curve
fits( ≈ 250 and ≈ 150 respectively) . So, its
evident that these two data points must be

7



NISER Astronomy Club

exchanged in order to get a better fit. This
was further identified in other data points,
and these data points were sorted accordingly.

Table 5: Fitered distances identifying the
moon
Time
(hrs)

Moon
1

Moon
2

Moon
3

Moon
4

0.00 645.578 -394.647 -213.492 47.484
23.46 523.538 -290.643 -90.660 -78.794
50.35 306.253 40.588 242.779 150.137
74.78 71.089 317.524 -50.116 -144.065
96.78 -223.929 366.952 -166.612 133.981
121.60 -432.992 177.152 140.713 -83.027
145.18 -602.074 -159.210 177.834 34.983
192.28 -650.667 -311.917 -111.016 -60.055
215.40 -579.614 - 227.559 95.656
238.58 -391.774 250.702 64.146 -124.677
262.41 -171.132 389.997 -242.367 151.453
288.53 77.627 221.450 113.247 -131.742
313.01 358.677 -113.034 215.117 82.764
337.33 540.942 -380.854 -168.513 -
360.01 634.938 -372.929 -169.337 -
384.18 734.579 -101.100 244.306 95.240
406.80 632.358 115.929 232.328 -95.311
433.06 437.780 370.179 -273.428 135.385

Once the final sorting was complete, we got
the corresponding distance table with the
moons identified(table 5) we fit the data
points again and obtained the corresponding
plots(Fig: 6 -10). the code and the explana-
tion for the code that is used for fitting and
the the reason for choosing the model func-
tion can be found in the appendix section(
Appendix 6.2).
The sine function is defined by:

y= Asin(ωt +c)
y= Distance for Jupiter to Moon
A= Amplitude of the sine graph
ω= Angular frequency
t= time elapsed
c=Phase difference

Figure 7: Fitted parameters:
A = 688.9858 ± 7.1254
w = 0.0157 ± 0.0001
c = 1.9060 ± 0.0197
time period in hrs: 400.3510 ± 2.1428
time period in days: 16.6813 ± 0.0893
the fit sin curve is y = 688.9858 sin(0.0157 t
+ 1.9060)
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Figure 8: Fitted parameters:
A = -384.6231 ± 8.0633
w = 0.0363 ± 0.0002
c = 1.4422 ± 0.0445
time period in hrs: 173.2124 ± 0.8239
time period in days: 7.2172 ± 0.0343
the fit sin curve is y = -384.6231 sin(0.0363 t
+ 1.4422)

Figure 9: Fitted parameters:
A = 251.4782 ± 12.6323
w = 0.0731 ± 0.0004
c = -2.0053 ± 0.1047
time period in hrs: 85.9349 ± 0.4955
time period in days: 3.5806 ± 0.0206
the fit sin curve is y = 251.4782 sin(0.0731 t
+ -2.0053)
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Figure 10: Fitted parameters:
A = 149.2201 ± 2.5679
w = 0.1479 ± 0.0001
c = 0.2702 ± 0.0316
time period in hrs: 42.4737 ± 0.0398
time period in days: 1.7697 ± 0.0017
the fit sin curve is y = 149.2201 sin(0.1479 t
+ 0.2702)

We went ahead and calculated the ratio of
their time periods, the ratio of time periods
are, M2/M1 is 2.023, M3/M1 is 4.078 and
M4/M1 is 9.425. So. based on these peri-
ods, we identified moon 1 as Callisto, moon 2
as Ganymede, moon 3 as Europa, and moon
4 as Io.

3.1.2 Verifying Kepler’s third law and
finding the ratios of the time pe-
riod

From the determined time periods and the
amplitudes of the orbits of the moons we
moved on to verify Kepler’s 3rd law, consider
the data in the following table:

Amp. (A) Period (T)
Callisto 688.985 400.351

Ganymede 384.623 173.212
Europa 251.478 85.9349

Io 149.220 42.473

Table 6: Amplitude and Period of the moons

A3(108) T2

Callisto 3.270 160280.946
Ganymede 0.569 30002.541

Europa 0.159 7384.803
Io 0.033 1804.011

Table 7: Amplitude cubed and Period squared
of the moons

Figure 11:

3.2 Error Analysis

• Errors in the fitted parameter:

The uncertainties in the fitted parame-
ters are derived from the covariance ma-
trix calculated during the optimization
process in scipy.optimize.curve fit.
The covariance matrix, V, is related
to the inverse of the Hessian matrix of
the least-squares cost function, V =
(JTJ)−1σ2, where J is the Jacobian
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matrix of the residuals and σ2 is the
variance of the data points. The di-
agonal elements of the covariance ma-
trix represent the variances of the pa-
rameters, and their square roots pro-
vide the standard errors (uncertainties).
This process assumes that the residu-
als are normally distributed, the model
accurately represents the data, and the
data points have uncorrelated errors. If
these assumptions hold, the uncertain-
ties offer a reliable measure of the con-
fidence in the fitted parameters. In
Python, the uncertainties are computed
as np.sqrt(np.diag(pcov)), where
pcov is the covariance matrix output by
the fitting process.

• Error in time period: Time period is cal-
culated using the formula:

ω =
2π

T

ω as well as error in ∆ω is already cal-
culated by fitting the data into a sine
curve.

Relative error:

∆T

T
=

∆ω

ω

By rearranging this we get

∆T = T · ∆ω

ω

• How accurate are we?:

the literature value of the orbital
periods,[1]

1. The orbital period of Io =1.769
days

2. The orbital period of Europa
=3.551 days

3. The orbital period of Ganymede
=7.155 days

4. The orbital period of Callisto
=16.689 days

Moons Determined Relative
value error

Io 1.7697 0.039 %

Europa 3.5806 0.833 %

Ganymede 7.2172 0.869%

Callisto 16.6813 0.047 %

Table 8: Accuracy of obtained results

4 Results and inferences

• The results obtained were:

1. The orbital period of Io =(1.7697±
0.0017) days

2. The orbital period of Europa
=(3.5806 ± 0.0206) days

3. The orbital period of Ganymede
=(7.2172 ± 0.0343) days

4. The orbital period of Callisto
=(16.6813 ± 0.0893) days

The relative errors between the ac-
tual and calculated value of time pe-
riod are 0.039% ,0.833%,0.869% and
0.047% respectively, as calculated previ-
ously(table 8). Which tells us that the
the values we have obtained are very
accurate.
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• From the graph obtained between A3

and T 2 (Figure 10)

T 2

A3 = Constant

Hence verifying Kepler’s third law.

• We went ahead and also verified the
Laplace orbital resonance ratio between
Io, Europa, and Ganymede i.e 1:2:4
We calculated the ratio to be 1:2.02:4.08

5 Conclusions

This experiment successfully calculates the orbital period of Jupiter’s moons which turned out
to be closely aligned with the actual value. By assuming the orbits to be circular we also
verified Kepler’s third law which establishes a relation between time period and the semi-major
axis of the orbit. Moreover we also verified laplace resonance ratio.
There errors can be justified by the following sources:

1. The coordinates were calculated by Gaussian fitting and finding the mean of the Gaussian.
But the plot obtain was not exactly a Gaussian curve but a much more complex curve.
Assuming it to be Gaussian reduced the complexity of the problem and gave results with
reasonable accuracy.

2. While modelling we simplified our data into a sine function by normalizing it . But in
reality the function obtained is a periodic function and not necessarily a sine function
,rather we can say it is a Fourier series. But to reduce complexity the periodic function
was assumed to be a sine function which helped us easily calculate ω and hence the
periods with reasonable accuracy.

3. Other source can be the alignment of our telescope. The telescope’s optics may diverge
from the intended target due to misalignment, which might result in aberrations or dis-
tortions in the picture that is viewed. Measurements might become more difficult because
to overlapping or hazy views of celestial bodies caused by poor alignment.

4. One improvisation that can be made is taking hourly data for the initial 3 to 4 days this
will help you obtain the curve for moons with short time period like io more accurately
and easily. As in our data set we can see the values have alternating signs for io which
made it difficult to plot a smooth graph

6 Appendix

6.1 Python script to calculate
the coordinates

1: Script to calculate the cordinates

import cv2
import matp lo t l i b . pyplot as p l t
import numpy as np
from s c ipy . opt imize import

c u r v e f i t

def gauss ian (x , amp, mu, sigma ) :
return amp ∗ np . exp (−((x − mu

) ∗∗ 2) / (2 ∗ sigma ∗∗ 2)
)

image path = r ”C:\ Users \91935\
Downloads\20241113 230358 . jpg ”

image = cv2 . imread ( image path )
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gray image = cv2 . cvtColor ( image ,
cv2 .COLOR BGR2GRAY)

gray image1 = gray image + 1e−5

c = 255 / np . l og (1 + np .max(
gray image1 ) )

log image = c ∗ (np . l og (
gray image1 ) )

log image = np . c l i p ( log image , 0 ,
255) . astype (np . u int8 )

p l t . f i g u r e ( f i g s i z e =(22 , 15) )
p l t . imshow ( log image , cmap=’ gray ’

)
p l t . t i t l e ( ” Logar ithmic  

Transformed  Image” )
p l t . a x i s ( ’ on ’ )

p l t . g r i d ( True , which=’ both ’ ,
c o l o r=’ white ’ , l i n e s t y l e=’− ’ ,
l i n ew id th =0.1)

x s t ep = int ( input ( ” Enter  the  x  
g r i d l i n e  s tep  s i z e ” ) )

y s t ep = int ( input ( ” Enter  the  y  
g r i d l i n e  s tep  s i z e ” ) )

p l t . x t i c k s (np . arange (0 , log image
. shape [ 1 ] , s tep=x s t ep ) )

p l t . y t i c k s (np . arange (0 , log image
. shape [ 0 ] , s tep=y s t ep ) )

p l t . x t i c k s ( r o t a t i o n =90)
p l t . show ( )

A = input ( ”Are  you  i s o l a t i n g  
j u p i t e r ?  ( y/n) ” )

i f A == ”y” :
#i s o l a t i n g j u p i t e r
x cord = int ( input ( ” Enter  the

 guess  x  coo rd ina te  o f  the
 j u p i t e r ” ) )

y cord = int ( input ( ” Enter  the
 guess  y  coo rd ina te  o f  the
 j u p i t e r ” ) )

ROI = gray image [ y cord −35:
y cord+35 , x cord −35:
x cord +35]

p l t . f i g u r e ( f i g s i z e =(10 , 10) )
p l t . imshow (ROI , cmap=’ gray ’ )
p l t . t i t l e ( ”Region  Of  I n t e r e s t

” )
p l t . a x i s ( ’ on ’ )
p l t . x t i c k s (np . arange (0 , ROI .

shape [ 1 ] , s t ep =1) )
p l t . y t i c k s (np . arange (0 , ROI .

shape [ 0 ] , s t ep =1) )
p l t . x t i c k s ( r o t a t i o n =90)
p l t . show ( )

#F i t t i n g a long x a x i s
y con = int ( input ( ” Enter  the

 constant  y  f o r  the  
j u p i t e r  ” ) )

X data = ROI [ y con , : ]
x va lue s = np . arange ( len (

X data ) )

v a l i d i n d i c e s = X data < 251
X data f = X data [

v a l i d i n d i c e s ]
x v a l u e s f = x va lue s [

v a l i d i n d i c e s ]
i n i t i a l g u e s s x = [ np .max(

X data f ) , x v a l u e s f [ np .
argmax ( X data f ) ] , 1 . 0 ]

popt x , pcov x = c u r v e f i t (
gauss ian , x v a l u e s f ,
X data f , p0=
i n i t i a l g u e s s x )

amp opt x , mu opt x ,
s igma opt x = popt x

A err x , mu err x ,
s i gma e r r x = np . s q r t (np .
d iag ( pcov x ) )

f i t t e d y v a l u e s = gauss ian (
x va lues , ∗popt x )

p l t . s c a t t e r ( x va lues , X data ,
l a b e l=” Or i g i na l  Data” ,

c o l o r=” blue ” , s =20)

13
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p l t . p l o t ( x va lues ,
f i t t e d y v a l u e s , l a b e l=”
Fi t t ed  Gaussian ” , c o l o r=”
red ” , l i n ew id th =2)

p l t . x l a b e l ( ”X va lue s ” )
p l t . y l a b e l ( ”Amplitude” )
p l t . t i t l e ( ” Gaussian  F i t  to  

Data  X a x i s ” )
p l t . x t i c k s (np . arange (0 , len (

X data ) , s tep =1) )
p l t . l egend ( )
p l t . show ( )

print ( f ”Optimized  parameters :
 Amplitude x  = {amp opt x
} ,  Mean  (mu) x  = {mu opt x
} ,  Sigma x  = { s igma opt x }
” )

#F i t t i n g a long y ax i s
x con = int ( input ( ” Enter  the

 constant  x  f o r  the  
j u p i t e r ” ) )

Y data = ROI [ : , x con ]
y va lue s = np . arange ( len (

Y data ) )

Y data f = Y data [
v a l i d i n d i c e s ]

y v a l u e s f = y va lue s [
v a l i d i n d i c e s ]

i n i t i a l g u e s s y = [ np .max(
Y data f ) , y v a l u e s f [ np .
argmax ( Y data f ) ] , 1 . 0 ]

popt y , pcov y = c u r v e f i t (
gauss ian , y v a l u e s f ,
Y data f , p0=
i n i t i a l g u e s s y )

amp opt y , mu opt y ,
s igma opt y = popt y

A err y , mu err y ,
s i gma e r r y = np . s q r t (np .
d iag ( pcov y ) )

f i t t e d x v a l u e s = gauss ian (
y va lues , ∗popt y )

p l t . s c a t t e r ( y va lues , Y data ,

l a b e l=” Or i g i na l  Data” ,
c o l o r=” blue ” , s =20)

p l t . p l o t ( y va lues ,
f i t t e d x v a l u e s , l a b e l=”
Fi t t ed  Gaussian ” , c o l o r=”
red ” , l i n ew id th =2)

p l t . x l a b e l ( ”Y va lue s ” )
p l t . y l a b e l ( ”Amplitude” )
p l t . t i t l e ( ” Gaussian  F i t  to  

Data  f o r  Y a x i s ” )
p l t . x t i c k s (np . arange (0 , len (

Y data ) , s tep =1) )
p l t . l egend ( )
p l t . show ( )

print ( f ”Optimized  parameters :
 Amplitude y  = {amp opt y
} ,  Mean  (mu) y  = {mu opt y
} ,  Sigma y  = { s igma opt y }
” )

#Determining the cen te r o f
the j u p i t e r

x cent = x cord −35+mu opt x
y cent = y cord −35+mu opt y

#Sani ty check
Sanity ROI = gray image [ int (

y cent ) −35: int ( y cent )+35
, int ( x cent ) −35: int (
x cent ) +35]

p l t . f i g u r e ( f i g s i z e =(10 , 10) )
p l t . imshow ( Sanity ROI , cmap=’

gray ’ )
p l t . t i t l e ( ” Sanity  Check” )
p l t . a x i s ( ’ on ’ )
p l t . x t i c k s (np . arange (0 ,

Sanity ROI . shape [ 1 ] , s t ep
=1) )

p l t . y t i c k s (np . arange (0 ,
Sanity ROI . shape [ 0 ] , s t ep
=1) )

p l t . show ( )
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print ( ” the  (x , y )  c e n t r a l  
coo rd inate  o f  the  j u p i t e r  
i s ( ” , x cent , ” ” , mu err x
, ” , ” , y cent , ” ” , mu err y
, ” ) ” )

else :
#i s o l a t i n g a moon
x cord1 = int ( input ( ” Enter  

the  guess  x  coo rd inate  o f  
the  ob j e c t ” ) )

y cord1 = int ( input ( ” Enter  
the  guess  y  coo rd inate  o f  
the  ob j e c t ” ) )

ROI1 = gray image [ y cord1 −10:
y cord1+10 , x cord1 −10:
x cord1 +10]

p l t . f i g u r e ( f i g s i z e =(10 , 10) )
p l t . imshow (ROI1 , cmap=’ gray ’ )
p l t . t i t l e ( ”Region  Of  I n t e r e s t

” )
p l t . a x i s ( ’ on ’ )
p l t . x t i c k s (np . arange (0 , ROI1 .

shape [ 1 ] , s t ep =1) )
p l t . y t i c k s (np . arange (0 , ROI1 .

shape [ 0 ] , s t ep =1) )
p l t . show ( )

#F i t t i n g a long x a x i s
y con1 = int ( input ( ” Enter  

the  constant  y  f o r  the  
ob j e c t  ” ) )

X data1 = ROI1 [ y con1 , : ]
x va lue s1 = np . arange ( len (

X data1 ) )

i n i t i a l g u e s s x 1 = [ np .max(
X data1 ) , np . argmax (
X data1 ) , 1 . 0 ]

popt x1 , pcov x1 = c u r v e f i t (
gauss ian , x va lues1 ,
X data1 , p0=
i n i t i a l g u e s s x 1 )

amp opt x1 , mu opt x1 ,
s igma opt x1 = popt x1

A err x1 , mu err x1 ,

s i gma er r x1 = np . s q r t (np .
d iag ( pcov x1 ) )

f i t t e d y v a l u e s 1 = gauss ian (
x va lues1 , ∗popt x1 )

p l t . s c a t t e r ( x va lues1 ,
X data1 , l a b e l=” O r i g in a l  
Data” , c o l o r=” blue ” , s =20)

p l t . p l o t ( x va lues1 ,
f i t t e d y v a l u e s 1 , l a b e l=”
Fi t t ed  Gaussian ” , c o l o r=”
red ” , l i n ew id th =2)

p l t . x l a b e l ( ”X va lue s ” )
p l t . y l a b e l ( ”Amplitude” )
p l t . t i t l e ( ” Gaussian  F i t  to  

Data  X a x i s ” )
p l t . x t i c k s (np . arange (0 , len (

X data1 ) , s tep =1) )
p l t . l egend ( )
p l t . show ( )

print ( f ”Optimized  parameters :
 Amplitude x  = {amp opt x1
} ,  Mean  (mu) x  = {
mu opt x1 } ,  Sigma x  = {
s igma opt x1 }” )

#F i t t i n g a long y ax i s
x con1 = int ( input ( ” Enter  

the  constant  x  f o r  the  
ob j e c t ” ) )

Y data1 = ROI1 [ : , x con1 ]
y va lue s1 = np . arange ( len (

Y data1 ) )

i n i t i a l g u e s s y 1 = [ np .max(
Y data1 ) , np . argmax (
Y data1 ) , 1 . 0 ]

popt y1 , pcov y1 = c u r v e f i t (
gauss ian , y va lues1 ,
Y data1 , p0=
i n i t i a l g u e s s y 1 )

amp opt y1 , mu opt y1 ,
s igma opt y1 = popt y1

A err y1 , mu err y1 ,
s i gma er r y1 = np . s q r t (np .
d iag ( pcov y1 ) )
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f i t t e d x v a l u e s 1 = gauss ian (
y va lues1 , ∗popt y1 )

p l t . s c a t t e r ( y va lues1 ,
Y data1 , l a b e l=” O r i g in a l  
Data” , c o l o r=” blue ” , s =20)

p l t . p l o t ( y va lues1 ,
f i t t e d x v a l u e s 1 , l a b e l=”
Fi t t ed  Gaussian ” , c o l o r=”
red ” , l i n ew id th =2)

p l t . x l a b e l ( ”Y va lue s ” )
p l t . y l a b e l ( ”Amplitude” )
p l t . t i t l e ( ” Gaussian  F i t  to  

Data  f o r  Y a x i s ” )
p l t . x t i c k s (np . arange (0 , len (

Y data1 ) , s tep =1) )
p l t . l egend ( )
p l t . show ( )

print ( f ”Optimized  parameters :
 Amplitude y  = {amp opt y1
} ,  Mean  (mu) y  = {
mu opt y1 } ,  Sigma y  = {
s igma opt y1 }” )

#Determining the cen te r o f
the o b j e c t

x cent1 = x cord1 −10+
mu opt x1

y cent1 = y cord1 −10+
mu opt y1

#Sani ty check
Sanity ROI1 = gray image [ int (

y cent1 ) −10: int ( y cent1 )
+10 , int ( x cent1 ) −10: int (
x cent1 ) +10]

p l t . f i g u r e ( f i g s i z e =(10 , 10) )
p l t . imshow ( Sanity ROI1 , cmap=

’ gray ’ )
p l t . t i t l e ( ” Sanity  Check” )
p l t . a x i s ( ’ on ’ )
p l t . x t i c k s (np . arange (0 ,

Sanity ROI1 . shape [ 1 ] , s t ep
=1) )

p l t . y t i c k s (np . arange (0 ,

Sanity ROI1 . shape [ 0 ] , s t ep
=1) )

p l t . show ( )

print ( ” the  (x , y )  c e n t r a l  
coo rd inate  o f  the  ob j e c t  
i s ( ” , x cent1 , ” ” ,
mu err x1 , ” , ” , y cent1 , ”
” , mu err y1 , ” ) ” )

1. The image is first converted to grayscale
and then logarithmic transformation is
applied to each pixel; this is done to
enhance the details in darker regions
while compressing the dynamic range of
brighter regions.

2. Then gridlines are inserted in the image
( you can select the size of grids depend-
ing on your image.) this helps us to iso-
late the region of interest.

3. For isolating Jupiter, we will consider
a range of ±35 pixels, whereas for the
moons, we will consider a range of ±10
pixels.

4. We have assumed the spread of light to
be Gaussian, so a Gaussian fitting is per-
formed on x and y axis and the center is
determined where the optimized mean
of the gaussian is from both the X-axis
and Y-axis fits.

Figure 12: an example plot of the gaussian fit

5. Finally a sanity check is done to verify
the determined center is correct. We get
a small (20*20 grayscale image)region of
interest centered around the calculated
coordinates. This ensured the calcu-
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lated coordinates match the visual cen-
ter of the image.

6.2 Python script to fit the
moons data with a sine
function

2: Script to fit the moons data

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . opt imize import

c u r v e f i t

def s i n e f u n c t i o n ( t , A, w, c ) : #
t−time , A−ampli tude , w−angu lar
frequency , c−phase d i f f e r e n c e
return A ∗ np . s i n (w ∗ t + c )

# data
t data = np . array

( [ 0 , 2 3 . 4 6 6 6 , 5 0 . 3 5 , 7 4 . 7 8 3 ,
96 . 783 , 121 . 6 , 145 . 183 , 192 . 283 ,
215 . 4 , 238 . 583 , 262 . 416 , 288 . 533 ,
313 . 016 , 337 . 333 , 360 . 016 , 384 . 183 ,
4 0 6 . 8 , 4 3 3 . 0 6 6 ] )
y data = np . array

( [ 645 .5781415 ,523 .5381766 ,
306 .2528327 ,71 .08862097 ,
−223.9288075 , −432.9923056 ,
−602.0743625 , −650.6665467 ,
−579.6136031 , −391.7743009 ,
−171.1319462 ,77.62693671 ,
358 .6773043 ,540 .9424275 ,
634 .9381008 ,734 .5785418 ,
632 .3584927 ,437 .7801396 ] )

# I n i t i a l gue s se s f o r parameters
(A, w, c )

A guess = (max( y data ) − min(
y data ) ) / 2

w guess = 2 ∗ np . p i / ( t data [ 1 6 ]
− t data [ 0 ] )#gues s ing the
per iod from the data

c gu e s s = 0
p0 = [ A guess , w guess , c gu e s s ]

popt , pcov = c u r v e f i t (
s i n e f u n c t i o n , t data , y data ,
p0=p0 )

# parameters and e r ro r s
A, w, c = popt
A err , w err , c e r r = np . s q r t (np .

d iag ( pcov ) )

print ( f ” F i t t ed  parameters :\nA = {
A: . 4 f }   {A err : . 4 f }\nw = {w
: . 4 f }   {w err : . 4 f }\nc  = {c
: . 4 f }   { c e r r : . 4 f }” )

print ( f ” time  per iod  in  hrs :  {2  ∗  
np . p i  /  w : . 4 f }   {2  ∗  np . p i  ∗
 w err  /  (w ∗  w) : . 4 f }” )

print ( f ” time  per iod  in  days :  {2  ∗
 np . p i  /  (24  ∗  w) : . 4 f }   {2  ∗
 np . p i  ∗  w err  /  (24  ∗  w ∗  w)
: . 4 f }” )

print ( f ” the  f i t  s i n  curve  i s  y  = 
{A: . 4 f }  s i n ({w: . 4 f }  t  + {c : . 4 f
}) ” )

t f i t = np . l i n s p a c e (min( t data ) ,
max( t data ) , 1000)

y f i t = s i n e f u n c t i o n ( t f i t , ∗
popt )

p l t . f i g u r e ( f i g s i z e =(15 , 12) )
p l t . s c a t t e r ( t data , y data , l a b e l

=”Data” , c o l o r=” blue ” )
p l t . t i t l e ( ” f i l t e r e d  Data  o f  Moon  

1” )
p l t . x l a b e l ( ”Time  e l apsed ( hrs ) ” )
p l t . y l a b e l ( ” Distance  from  Jup i t e r

( p i x e l s ) ” )
p l t . l egend ( )
p l t . show ( )

p l t . f i g u r e ( f i g s i z e =(15 , 12) )
p l t . s c a t t e r ( t data , y data , l a b e l

=”Data” , c o l o r=” blue ” )
p l t . p l o t ( t f i t , y f i t , l a b e l=”

Fi t t ed  S ine  Curve” , c o l o r=” red
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” )
p l t . t i t l e ( ” f i t t i n g  f o r  Moon  1” )
p l t . x l a b e l ( ”Time  e l apsed ( hrs ) ” )
p l t . y l a b e l ( ” Distance  from  Jup i t e r

( p i x e l s ) ” )
p l t . l egend ( )
p l t . show ( )

This code performs a curve fitting of a sinu-
soidal model to a set of data. The data repre-
sents the distance of a moon from Jupiter over
time, and a sinusoidal function is chosen be-
cause the motion of celestial bodies often fol-
lows periodic patterns, such as orbits, which
can be modeled using sinusoidal functions.

The goal of the code is to determine the ampli-
tude, angular frequency, and phase difference
of the sine curve that best fits the provided
data, and subsequently calculate the period
of the oscillation.

1. Code Description The code imports
three libraries:

• numpy: For numerical operations
and array handling.

• matplotlib.pyplot: For plotting
the data and the fitted curve.

• scipy.optimize.curve fit: For
performing the curve fitting.

The main steps of the code are as fol-
lows:

(a) Defining the Sine Function: The
function sine function(t, A,

w, c) models the periodic data
with a sinusoidal function:

y(t) = A sin(wt + c)

where:

• A is the amplitude,

• w is the angular frequency (re-
lated to the period),

• c is the phase difference.

(b) Preparing Data: The time data
(t data) and corresponding dis-
tance values (y data) of the moon
are provided.

(c) Initial Guesses: Initial guesses for
the amplitude (A), angular fre-
quency (w), and phase difference
(c) are made. The amplitude is
set to half the difference between
the maximum and minimum of the
data, the frequency is estimated
based on the time interval between
data points, and the phase differ-
ence is initially set to zero.

(d) Curve Fitting: The curve fit

function is used to fit the sine func-
tion to the data. It returns the op-
timal values of the parameters A,
w, and c, along with their uncer-
tainties.

(e) Period Calculation: The period T
of the oscillation is calculated from
the angular frequency w using the
formula:

T =
2π

w

The uncertainties of the period are
also computed using the propaga-
tion of error.

(f) Plotting: Two plots are generated:

• A scatter plot of the original
data.

• A plot of the data points along
with the fitted sine curve.

2. Results The fitted sine curve is of the
form:

y(t) = A sin(wt + c)

where the parameters A, w, and c are
determined by the curve fitting process.
The period of the oscillation is derived
from the angular frequency w, and its
uncertainty is calculated.
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